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For a numerical solution of tidal dynamics equations, the alternating direction scheme 
is used. The difference scheme is described in detail, and the proof of its stability and 
convergence is given. The results of application of the method in different geophysical 
conditions are reported. The calculated charts of isoamplitudes and co-tidal lines as 
well as those of tidal currents are generally in satisfactory agreement with observational 
data. 

1. INTRODUCTION 

It is customary to use in tidal calculations numerical methods of integration of 
tidal dynamics equations. Especially popular are a method of boundary values and 
a hydrodynamical numerical method (often referred to as HN-method) [I, 21. 

The first of the above methods assumes a harmonic nature of variations in time 
of tidal characteristics. According to this assumption, a system of linearized 
dynamics equations is reduced to one partial differential equation of elliptic type 
with respect to complex amplitudes of tidal oscillations of the level. The formulated 
boundary value problem is solvable, and has a unique solution if the condition 
u > I (where cr is angular velocity of the tidal wave, 2, the Coriolis parameter) 
is met, and values of amplitudes are known on the whole contour of a considered 
basin or on one of its parts, whereas on the other part there is a condition of no 
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transport (this condition is equivalent to formulation of oblique derivative for the 
level). The solution is found by standard methods, using the first variant of 
boundary conditions, or by a special numerical method, developed in [3], for 
Poincare problem, in the case when, on one part of the contour, the boundary 
condition is in a form of oblique derivative. 

If the condition o > I is not met, and a “critical” latitude (on which I becomes 
equal to u) falls on the considered basin whose depth exceeds the thickness of the 
bottom boundary layer, then existence and uniqueness of the solution are possible, 
if horizontal turbulent friction is taken into account in the initial dynamics 
equations [4]. However, in this case we have a higher order equation for the level, 
and there arise some additional difficulties, due to the fact that we have to set one 
more boundary condition on the contour of the basin. 

In HN-method we do not make any assumptions about the nature of time 
variations of tidal characteristics. Instead, arbitrary initial conditions are set for 
tidal oscillations of the level and velocity transport. Integration of the initial 
system of equations is carried out numerically by stationarity method. A solution 
is assumed to be found when it becomes periodic, which happens if we set periodic 
boundary conditions for the level at the open input. 

If we do not set periodic conditions, we can consider nonlinear frictional effects. 
Unfortunately, it is impossible to take accurately into account these and Coriolis 
effects, because in numerical realization of the method, we use Eliassen’s grid. As 
is known, in this case, one has to make space interpolation which leads to 
smoothing of fields of tidal elements. Another important feature of Eliassen’s 
grid is that it cannot satisfy a condition of no slipping on a solid contour of the 
basin. Therefore, when dynamics equations contain terms describing horizontal 
turbulent friction, the condition of no slipping is replaced with that of slipping. 
The latter can result in underestimation of tidal energy dissipation in the regions 
close to the coast and, as a consequence, to distortion of the tidal energy balance 
in these regions. 

During the last three years we have tested the new method of calculating tidal 
motions in adjacent seas [5]. In the present paper, we give theoretical substantiation 
of the difference scheme described in [5] and the results of application of the method 
in various physical and geographical conditions. 

2. BMIC EQUATIONS 

Let us consider an adjacent sea of small space length, so that we can neglect an 
effect of tide-generating forces. In such a sea, tidal motions are formed by inter- 
action of such forces as horizontal gradient forces, pressure, Coriolis forces, 
inertness, bottom and horizontal turbulent friction. Therefore if we apply the 
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usual method of describing macroturbulence in a sea of variable depth, initial 
tidal dynamics equations can be written as follows: 

aw 
-=--~&+A,eu+A,w+~Iw\w= -gGgrad{, at 

ai z + div w = 0, 

(2.0 

(2.2) 

where w is vector function with components U, D, which are the components of 
total transport along X, y axis, 5 the vertical displacement of the sea level, D the 
depth, r and A the coefficients of the bottom and horizontal turbulent friction, 
g the acceleration of gravity, t the time, A, the matrix of coefficients equal to 
(j -i), 1 the Co rio is parameter, d the plane Laplace operator. w is regarded equal 1 
to zero on the coastline T, , 

w/r1 = 0, (2.3) 

and a known function of horizontal coordinates and time on the liquid sea 
boundary I’, , 

w/r2 = &, y, 0. (2.4) 

Besides, according to the law of mass conservation, the values of wn on the contour 
r, must satisfy the following integral relation: 

I I Tdt pn dr = 0, (2.5) 
0 r2 

where won is a normal component to the liquid boundary r, of total transport, 
dr is an element of the contour, and T is tidal period. 

Let us drop the condition of periodic variations of w and 5 in time, and turn to 
a solution of the problem with initial data. It will be supposed that at an initial 
moment of time (at t = 0), fields of tidal currents and of level oscillations are 
known. 

w = wo ; 5 = 50, with t = 0, (2.6) 

where w. , ilo are known functions of horizontal coordinates. 
It wilI be noted here that the quadratic resistance law accepted in (2.1) does not 

take into account the existing shift of phases between shear stress at the bottom 
and the tidal current. Another method for calculating the bottom friction without 
this disadvantage was suggested in [6], where it was shown that the bottom friction 
coefficient is not a universal constant, but depends in a complex manner on external 
parameters determining turbulent regime in the bottom boundary layer. 
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3. DIFFERENCE SCHEME 

For a numerical solution of the above system of equations (2.1) and (2.2), we use 
a method of finite differences. For this purpose we use the difference alternating 
direction scheme proposed in [5], where the system (3.1) of difference equations 
is written as followd): 

U”f1/2 - un 1 
+ _ &nUntl/2 - - ! D ag” - ! vn 

2 
- 

7 28 ax 2 

vn+1/2 - vn 

7 

- 

1 + _ &~~9W/2 = - 
2 

+ 
9%+1/B fl u;y) + - 

2 (3713 

:4 

w-1/2 
nq+w + $ (U~+lP + vyng) + - fz -- 

2 (353 

p2+1- u”t1/2 + 1 1 xntl 1 = - -- v n+l 7 2 R;+lPu”+l z gD ax z 

Here, for any function u, v and the coordinates x, y, 

%x(x, Y, 0 = (vw(x + h, Y, t) - v(x, Y, 01, 
v&t Y, 0 = (~lw(x, Y, 0 - v(x - h, Y, 01, 

V 21 = (%h 9 

(3.lJ 

l Note: The difference scheme given below is of explicit-implicit character (it is explicit for 
equations of gradient of the level, and implicit for equations of complete flows). 
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T is a time step, h finite difference grid length, (a~/&), @[lay) are components of 
horizontal gradient of the level, RI = (r/P) .\/(u + c&)” + (u + i&J”, Cl , i&. are 
components of vector 2, fi and &-values depending on Z1 , 5, and their difference 
relations along x, y, and t. Since d, and &. are sufficiently smooth functions, these 
difference relations are restricted by modulus. 

It will be noted that relations (3,) and (3,) for (~@Lx) and (a</ay) are derived 
by approximation of the continuity equation differentiated with respect to x and y”). 

We add to system (3.1) boundary conditions u, u/r = 0 and initial data for 
u, 0, ww, @WY>. 

Henceforth, the symbol L& will denote a set of grid points belonging to the 
domain Q and r, its boundary. We introduce also the following notations for the 
vector w’h = (~4~ , 2~~): 

Besides, we introduce finite difference norm and scalar product according to the 
formulae 

11 whk 11’ = hZ ; (whk)2, 

II WE, IIS = h2 F b&Y, 

(fhk, euhk> = ha c fhkak, 
4 

where a,, = Q,, u r, , subscript h of the function wh indicates that w is considered 
in grid points and superscript “k” indicates that wh is taken on the layer t = kr. 

To prove the stability of scheme (3. I), we make use of the following well known 
relations: 

where 

2Tu&d” = (u”)” - (u”-1)” + T2(ufk)a, 

h2 c &,&, = -h2 c t+,t+,$ , 
4 4 

(3.2) 

(3.3) 

w k = f ($ _ &I). 

Formula (3.3) is valid for the arbitrary functions uh , ah defined on the grid if 
vh/rh = 0. In order to prove a unique solvability of (3.1), it is sufficient to show 

a When another method of constructing a difference scheme is used (i.e. when the terms con- 
taining grad J and div -w are approximated by central differences), then in de&mining the level r 
on the grid boundary, r, it is necessary to set velocity components at grid points outside of the 
domain Q,, . 
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that a homogeneous system corresponding to it on each layer t = (k/2) T, 
k = 1, 2,..., (T/T) has but a trivial solution. Let us multiply homogeneous equations 
corresponding to (33 and (34) by h2 . u”+l and h2 * un+l, and sum up the resulting 
expressions over all grid points, making use of expression (3.3). This yields 

= - ; gr2 ; v;+~zP+~D~ , (3.4) 

11 u”+1112 + Th2;R;+1i2(U;+1)2 + $11 .;+1112 + ;(,.,:.,+, + ;g+2xD@+l)2 % 
(3.5) 

From the above relations follow the inequalities 

II vn+l II2 + q II v:+lj12 < & gT2h;lM12 11 v”flll2, (3.6) 

II @+l II2 + q II .;+l iI2 < $ gT”h;‘Mt /I Un+’ II2 

+ ; II vnfl II II Pi-l II, (3.7) 

where 

K = m, Uh, , &A “=$IID~. 

If T(T < 4 dAi ML’) is sufficiently small, from (3.6) and (3.7) it follows that 
11 v”+lII = 11 zP+1 II = 0. In this case, employing the equations for (Q&C) and 
(a[/@), we find that (&JJ&) and (a&+) are equal to zero in the whole domain Q1, . 

Thus, we have proved that a homogeneous system has but a trivial solution, 
and, hence, that an inhomogeneous system is uniquely solvable for any right side3). 

Stability of the D@erence Scheme (3.1) 

Let us prove stability of the difference scheme (3.1). For definiteness it will be 
assumed that at an initial moment components of transport u, u and those of the 
level’s horizontal grandients (a{/&) and (&!Jay) are equal to zero4. 

8 Note: in the case of a uniform depth D (i.e., when MI = 0), system (3.1) can be uniquely 
solved for any 7. 

4 Nonzero initial conditions will add (during conversion) the terms which can be included in the 
addends denoted by symbolf. 
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Let us multiply (33, (3J, (33, (3,) by 27h2z.4n+1/2, 2~h~r~+l/~, and ~T/z~zP+~, 
respectively, and sum up the resulting expressions over all points Q,, . Then we 
add expressions one and two and expressions three and four. Employing formulae 
(3.2) and (3.3) and an easily verifiable expression 

k = 0, 4, l,..., 

we get the basic energy identity 

II v+l /I2 - II wn II2 + ~“(11 w;+1’2 II2 + II w;+1 II”) 

+ AT{ll w;+1’2 II2 4 I1 g+l II2 + II eo, n+1/2 112 + 11 q+l p> + @n+vy + (p+y 

= Tn+l + AT~{(u;;~~~, u;+ll2) + (u;:1/2, v;+1/2) + (u;;l, .;+1) + (p;l, vjt+‘)> 

f B:+l12 + B;+‘, (3.9) 

where 

Ukfl/2 = 
I 

i (@+lP - uk), 

(Bk+1/2)2 = -r/z2 2 &lk[(~;+1/2)2 + (@l/32], 

B;+‘P z T{I(Uk+1/2, vkt1/2 _ vk) + (fk+1/2,wkfl/2) 

- (Rlk~;+1/2, UW2) _ (Rlk~;tl12, v k+lP)}, 

Tntl = - gT [(D $ 

+ (D y, @) + (D y, on+‘)]. 

The second term in the right side of (3.8) is found as follows: 

AT2 I(U;;1’2, Uy/‘)l < 2$? 11 g+l/2 112 + f 11 $+1/2 112, 

k = n, n + $. (3.10) 
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The last summand in (3.9) is found like this: 

1 Bt+li2 1 < ; (~~2 11 $+1/e 112 + E;Z l(fk+lP 112 

+ I 1 I (II zPk+lj2 II2 + II euk 112) + &22 II r@+1/2 112 

-I- &i2 II _ak+lj2 II2 + rA;2[m$x I ak+1/2 I (‘11 @+W 112 + II eyk 1171) 

= WI wk+1’2 II2 + II w” 113 + c, , k = n, n + 4, (3.11) 

where E 1 , e2 are any positive quantities, C and C, constants depending on the choice 
of c1 , c2 and conditions of the problem. 

Let 
b” = u,” -I- vyn, 

bn+ll2 = ,qtV2 + vyn+l/2, 

L, = i bk + %cl bk+V, 
k=O k=O 

LMP = i bk + i bk+l/2, 
k-0 h-0 

and indices “D” and “D,” of any vector {v~} indicate that instead of {an} we consider 
vectors (ah d&,} and {vhDh,}, respectively. 

Using relations (3.1,), (3.1,), (3.2), and (3.3) we rewrite the first term in the right 
side of (3.9): 

,;1+l = - g (T,nfl + Cfl), (3.12) 

where 

c+l = (L;+l, b;;+l - b2;“/2) - @,;+I, b;++1/2) _ 11 b;+“2 112 

g+l = (Ln+l, z&y, + (L%+l, zq) + (Ln+l, up + fly) 

_ (bn+l + v,” + b”+1i2, &;““) _ (b;+l + uz” + pn+l12, ,,;,‘, 

- (v;+l, z&r> - (u;+l, vq. 
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Summing up the above equality over k through 0 to n, we get 

where 

+= - q [II L;;” 112 + i (.skfl + 27-F)], (3.13) 
k=O k=O 

For 1 Tt+’ I the following estimate is valid: 

$1 T;+l I < Alp3 & g 11 L;+’ II2 + Ml7 ; (I, euk+’ II2 + II wk+1’2 11’) 

+ %T2JG 7 (II uk+l II2 + II Wk+1’2 113. (3.14) 

Let the following condition be fulfilled: 

Then, after summing up relations (3.9) over k through 0 to n, and considering 
expressions (3.10)-(3.14) and the estimates appearing in sk of difference derivatives 
in terms of the functions U, u, we get the following a priori estimate: 

II JJn+l II2 G ( 
2g maxnh Dhr2 

p + C2(% 9 E2, r, 07 

+ikfp (II yk+l II2 + II Yk+1’2 II”) + c3, 

(3.16) 
where 

II yn+l II2 = II eun+l II2 + g II L;+l 112, 

11 yn+1/2 112 = 11 w+l/2 112 + g ,I L;+l/z 112, c, ) c, 

are constants joining all constants in corresponding estimates. 
A similar inequality is valid, beginning with the layer t = (n + 4) 7, 

II Yn+1’2 II2 < 
2g maxq Dh2G 

h2 + CZ(El, 62, r, & 

+ ibf,T 
F 
J- + '"';"l ) i (II Yk II2 + II yk+l12 II2 -i- c, - 1 k=O (3.16’) 
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Let us require that, in addition to (3.15), the following condition be fulfilled, too: 

2g maxn, DhG 
h2 +c27+kf1 (3.17) 

Then, considering the fact that (3.16) and (3.16’) are difference approximations 
of the differential inequality 

with z = ji 11 w /I2 + g (/ LD 113 dt, and using the finite difference analog of Lemma 1 
in [7], we derive, on the basis of (3.16) and (3.16’), the following expression: 

II P II < G 3 k=n; n+$; n = 0, l)...) N = (T/7), (3.18) 

whichzensures stability of the difference scheme (3.1) if conditions (3.15) and (3.17) 
are fulfilled. In (3.18), C, is a constant independent of k. 

It will be remarked that with D(x) = D, = const., condition (3.17) can be 
reduced to5 

v+ C2(q,E2,r,l)7 < 1. (3.19) 

Because of smallness of C, for small values of l 1 , e2 , r, 1, from (3.19) follows 
the Courant-Friedrichs-Levy criterion 

(3.20) 

Fulfilment of condition (3.15), with T, h -+ 0, naturally, involves fulfilment of 
(3.17) or (3.20). Therefore, one can take just one condition, (3.15), as stability 
criterion for scheme (3.1). However, in concrete calculations, when 7 and h take 
on fixed values, conditions (3.15) and (3.17) both should be checked. 

Convergence 

In order to prove convergence of the difference solution WA, &, to a solution of 
problems (2.1)-(2.3), it will be supposed that problems (2.1)-(2.3) have a sufficiently 
smooth solution w*(_x, t), <*(g, t). Let w,*, (a{*/ax), , (ac*/?~), correspond on the 
grid with w*, (a{*/&), (a<*/@~). Equalities (3.1) are Correct for wh*, @<*/ax), , 

5 For the wave components with a minimal possible wavelength equal to 2h, a condition of 
stability equivalent to (3.19) was obtained in [8]. A general analysis of the dispersity equation 
corresponding to the linearized system (3.1) with constant coefficients is given in [5]. 
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(ac*/Q)h with discrepancies to be denoted as rim, rzm, plmpzm, respectively. These 
discrepancies vanish if T, h + 0, when the solution P*, [* is sufficiently smooth 
(e.g., when all functions and their derivatives appearing in the initial system are 
continuous). 

For 

p,, = w, - wh*, Plh = ($,, - (g), > 

42h = (al;/ay)7& - @[*la y ) h , we can Write the following difference System: 

n+1/2 
P2 - P2n 

7 + & I p” + eu*n I p;+l’2 

=- q q2n + -$ (p$jJ2 + p&J + ipf+‘i2 + r;+lP 

-+ *n+l/2(lp* + ,*n 1 - / u*n I), 

n+1 n+1/2 
P2 -P2 

7 
+ $1 pn+w + W*n+1/2 1 p,n+l 

0 = 2 qi+l + 4 (p$Fil” + p;$) + ip;+l12 + r;+l -- 

r 
- - V*n+l(lpn+1/2 + W*n+1/2 1 _ 1 W*n+1/2 I), 

2D2 

P: ” - PY2 
7 

+ .& lpn+V + !@w2 1 p;+1 

gD = -- 2 q;+l + + (p$-$ + p:nyfJ112) - i pi+’ + r;+l 

-&u *n+l(lpn+1/2 + g*n+1/2 1 _ I v*n+l/2 I), 

?a+1 - 
42 - 42 n - ; (pgy” + pln,g + p;;; + Pgy”> + TP;+l, 

n+1 - 
41 - 41 n - ; (p;$ + p;;;J2 + p$P + p$y) + 7p;+1. 

(3.21,) 

(3.21,) 

(3.21,) 

(3.21,) 

(3.21,) 

(3.21,) 
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In order to reduce calculations, it will be supposed that r, = I’. Then boundary 
conditions for pn can be presented in a form p,lI’, = 0. 

Let us multiply each equation of (3.21) by 2Th2 and a corresponding function, 
and then sum up the resulting expressions over the whole domain 52, . After 
conversions identical to those made in proving stability, we get inequalities which 
differ from (3.16) and (3.16’) only in additional terms, i.e., 

II p+l II2 < GT i (II yk+l II2 + II ~++l/~ 113 +.P+l, (3.22) 
k-0 

11 yn+l12 II2 < Co7 f (II yk II2 + 11 yk-h1j2 112) + jn+l12. 
k=O 

(3.22’) 

Here II yn+l II, yn+l12 II are found, analogously to (3.16), (3.16’), by substituting 
ph for wh : 

?I+1 

J %+l = 7 k;. (r”,pk) + kio (~k+l/2,p”+‘i*)] 

+ g m,ah” Dhr2 i i (pi, piI, 
k-0 i=O 

J w-1/2 = 7 (_rk, p”) + i (_rk+II2,pk+lIa)] 
k=O 

-r and p being vectors with components (:) and ($), respectively. 
Modulus jn+l will be found as follows: 

where 

I jn+l I < Go7 kio (IIp”+l II2 + IIpk+1’2 II3 + jf+l, 

Jl ‘n+1 = Cl17 ;. (II _yk+l II2 + II Tk+1’2 II2 + Ilpk 113. 

Similarly, we find I jn+l12 I. By means of inequalities (3.22) and (3.221, if 
T(T < i(max(C, , C,) + C,,)) is sufficiently small, we find the estimate II yk II in 
terms of jlk 

II Y” II Q G2./lk~ k=n,n+;; n = 0, l,..., N = r . 
7 
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Assuming smoothness of a solution, we get jl” -+ 0 if T, h + 0. From here 
follows convergence of the difference solution ?$yh, (a{/&&, , (?$$)h to eu*, 
(ac*/ax)(a{*/Q) in difference norm. 

Hence, we have proved convergence of the difference scheme (3.1). 
An assumption of correspondence of rh with r can be changed for a requirement 

of smoothness of r. 
Using the methods described in [9, IO] one can prove convergence of the 

difference solution eyh , &, with the solution eo* E _W,2(Q) n g2’(Q), c* E L2(Q) 
for any t o [0, T]. 

4. REWJLTS OF APPLICATION OF THE METHOD 

The method described here was tested in the North Sea and in four regions of 
the Arctic Seas, to be referred to as regions A, B, C, D. We have chosen these 
basins because, first, they are studied in more detail as regards tides and, second, 
because of a variety of conditions that cause tidal motions in these basins. Thus, 
here there are various forms of the bottom relief, a variety of sea lengths and 
coastline shape. Besides, it is essential that some basins are located in the region 
of “critical” latitude. 

First of all, we shall give a brief account of the procedure by which we determined 
depths and velocity of tidal current in grid points. Depths were taken from bathy- 
metric charts in points that are spaced half of a mesh size apart. Then, by smoothing 
over five points, we calculated depths in grid points. Results of numerical experi- 
ments showed that such a procedure ensured sufficient smoothing of the bottom 
relief in the considered regions. A two- or three-fold smoothing did not practically 
change the results of calculation. 

The necessary direction and velocity of the tidal current in points of the liquid 
contour were determined from hourly charts of the tidal current in the surface 
layer. The charts were made from observational data. In points of the liquid contour 
where such data were not available, the direction and velocity of the tidal current 
were found by interpolation of their values in neighboring grid points. 

The mesh length in the North Sea was taken equal to 74 km., in the Arctic basins 
50 km.; the time interval in both cases was 12 min. Coefficients of the bottom and 
horizontal turbulent friction in the considered regions were assumed to be fixed, 
and equal to 3 . 10-3, lOa cma/sec. (in the North Sea) and 3 * 104, 8.5 . 108 cma/sec. 
(in the Arctic basins), respectively. These values were chosen by performing 
a series of experiments in such a way that an error in calculating velocity of the 
tidal current in check points was minimal. 

We present results of comparison of the calculated values of tidal characteristics 
with the data of factual measurements. 

In Fig. 1 is shown a chart of isoamplitudes and co-tidal lines of the main lunar 
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FIG. 1. A chart of isoamplitudes and co-tidal lines of wave M2 in the North Sea. 

semidiurnal wave A4, in the North Sea. First of all, it strikes one that the pattern 
of tidal oscillations we have got is very close to that obtained in [l] on the basis of 
all available observational data. 

We show in Table I a comparison of calculated and observed amplitudes and 
phases of the level’s tidal oscillations in 29 points of the North Sea coast. The 
table also presents relative errors in calculation of amplitudes in per cent and errors 
in calculation of phases per hour. One can see that, in most cases, there is a satis- 
factory agreement between calculated and observed data. Fairly large disagreement 
observed at Hunstanton Pier, Cromer, and Delfzijl seems to be due to local 
peculiarities of the sea bottom relief and of the coastline configuration, which 
could not be considered in calculations. 

Analysis of Figs. 2 and 3, which illustrate calculated and observed data of velocity 
vector of tidal current for wave MZ in the four regions of the Arctic Seas, shows 
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Table I 

29 

A Comparison of Calculated and Observed Tidal Oscillations of the Level in Different Points 
of the North Sea Coast 

N” Name of point 

Coordinates Amplitudes (cm) Phase (dg) 

Calc. 
Rel. error 
err. per 

Latitude Longitude Calc. Obs. % Calc. Obs. hour 

1 2 3 4 5 6 7 8 9 10 

1 Aberdeen 

2 Arbroath 

3 Dunbar 

4 Blyth 

5 R. Tyne Entrance 

6 R. Tees Entrance 

7 Whitby 

8 Skegness 

9 Hunstanton Pier 

10 Cromer 

11 Winterton 

12 Lowestoft 

13 Harwich 

14 Southend 

15 Ramsgate 

16 Oostend 

17 Zeebriigge 

18 Vlissingen 

19 Brouwershaven 

20 Hoek van Holland 

21 Katwijk 

22 Ijmuiden 

23 Der Helder 

24 West Terschelling 

25 Delfzijl 

26 Helgoland 

27 Roter sand Leuchtturm 

28 Esbjerg 

29 Lister 

57”09’ 2”05’ W 113 131 21 30 25 0.17 

56’03’ 2”35’ w 130 155 16 65 44 0.7 

56”OO 2”31’W 147 161 9 75 56 0.6 

55”07’ l”21’W 160 160 0 87 87 0.0 

55”Ol’ l”24’W 165 158 4 90 91 0.03 

54”36 1”lo’W 170 169 1 100 98 0.07 

54”29’ O”37’ w 175 165 6 105 103 0.07 

53”09’ O”21’ E 150 213 30 180 169 0.37 

52”56’ O”29’ E 130 218 40 204 180 0.80 

52”56 l”18’ E 105 159 34 235 189 1.54 

52”43’ l”41’ E 86 102 16 233 211 0.74 

52”29 l”46’ E 75 70 I 285 259 0.87 

51”57’ l”17’ E 138 130 6 325 326 0.03 

51”31’ O”45’ E 185 201 8 326 354 0.93 

51”20 l”25’E 197 187 5 340 342 0.07 

51”14 2”55’ E 185 180 1 10 5 0.17 

51”20 3”12’ E 157 169 7 20 15 0.17 

51”27’ 3”36’ E 135 172 22 35 32 0.10 

51”44’ 3”54’ E 98 115 15 55 57 0.07 
51”59 4”07’ E 79 80 1 60 64 0.13 
52”12’ 4”24’ E 76 68 12 89 81 0.27 
52”28’ 4”35’ E 65 68 4 110 106 0.13 

52”58’ 4”45’ E 55 53 4 169 159 0.33 

52”22 5”13’ E 58 69 16 212 222 0.53 
53’20 6”56’ E 85 125 32 260 308 1.60 
54”ll’ 7”53’ E 95 99 4 330 316 0.47 
53”51’ 8”05’ E 118 129 9 328 316 0.40 
55”29’ 8”28’ E 54 60 10 30 39 0.30 
58”06 6”36’ E 7 4 75 58 51 0.23 
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FIG. 2. The direction of tidal currents in four 
regions of the Arctic Seas at (r of a tidal period. 
Small arrows show the results of calculation, big 
ones show observational data. 
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that disagreement between calculated and observed data is, as a rule, not too large 
in central parts of the considered regions, and it increases in the areas close to 
the coast. This regularity is especially notable in region C, in whose western part 
disagreement between calculated and observed characteristics of the current 

FIG. 4. Ellipses of the tidal current calculated with the help of two resistance laws. See the 
text for explanation. 
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appears to be the greatest. According to take-off data, here there is a notable 
increase in the velocity of tidal current, due to some peculiarities of the bottom 
relief which have not been considered because their horizontal scale does not 
exceed the mesh size. 

Another reason for essential disagreement between calculated and observed 
values of the velocity in the sea areas close to the coast might be errors of obser- 
vations and of the analysis. These errors become especially appreciable with low 
velocities of tidal currents typical of the Arctic Seas. 

It is not excepted, however, that some responsibility ought to be placed upon 
the method itself, in which some assumptions have been made (such as those 
associated with the use of fixed values for the coefficients of bottom and horizontal 
turbulent friction within the considered water basins). In this context, of some 
interest is Fig. 4, which shows ellipses of tidal current for wave M2 calculated with 
regard to the dependence of the bottom friction coefficient on the external para- 
meters of the bottom boundary laryer (see [6]), and, consequently, on horizontal 
coordinates. In the same figure, the dashed line shows ellipses of tidal current 
obtained with the help of the well known quadratic resistance law. One can see 
that there is very little difference between the results of the two calculations. This 
may be due to the presence of large depths in the main part of the considered 
region, when the bottom friction does not exert any essential influence upon 
formation of tidal motions. 

Southern and southwestern parts of the water basin near the mainland are most 
representative from the point of view of comparison of the two resistance laws. 
Here the sea depth is of the order of several tens of meters, and the effect of the 
friction is essential. Even at a first glance at this figure one can see a striking 
difference between the tidal current ellipses. 

In spite of the restrictions mentioned above, application of the method suggested 
in [5] for calculation of tidal motions in different physical and geographical 
conditions proved to be worthwhile. The charts of isoamplitudes and co-tidal 
lines, as well as the charts of tidal currents, made on the basis of the computed 
results are, generally speaking, in good agreement with observational data, which 
allows us to recommend this method for performing mass calculations. 
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